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Abstract— Functional Object Manipulation (FOM) tasks re-
quire interacting with an object to elicit its intended function.
These tasks span from simple object usage, such as hammering
a nail, to more complex interactions like spraying a plant with a
water sprayer. Often, these complex interactions feature inter-
nal object mechanisms such as triggers or buttons, and the task
success requires directing the effect of the actuation to other ob-
jects in the scene, e.g., when aiming and actuating a spray bottle
or a glue gun. Compositional Dexterous FOM tasks require
coordinated control over both the object’s internal and external
degrees of freedom, posing a significant challenge for robots
due to the demanding integration of semantic understanding
(of the object’s function, actuation mode, and application area)
with intricate physical dexterity (to manage grasp stability,
movement trajectory, and actuation). We introduce CoDex,
a zero-demonstration framework leveraging vision-language
models (VLM) to generate semantic constraints and enforcing
them via analytic constrained optimization, and constraint-guided
RL to compose grasp—move-actuate behaviors that transfer
directly from simulation to the real world. We evaluate CoDex
to control a 7 DoF robot arm with a 16 DoF multifingered hand
in six Compositional Dexterous FOM tasks involving previously
unseen objects with internal mechanisms(spray bottles, hot
glue gun, air duster) and their application on various unseen
target objects, showcasing its ability to autonomously discover
and execute complex, physically viable dexterous behaviors
without human demonstrations. More information at https:
//codex-2025.github.io/.

I. INTRODUCTION

Imagine a robot tasked with spraying a plant: it needs to
grasp the bottle stably, move and aim it correctly towards the
leaves, and squeeze the trigger to activate its functionality, all
in a coordinated sequence. This kind of task is a special case
of Functional Object Manipulation (FOM) [1]-[5], where
for the agent to use the object for its specific purpose. It
must (1) actuate the object’s internal degrees of freedom
(e.g., trigger, button, lever) while (2) coordinating control
of its external DoF (object pose) to apply the function to the
intended target region [6], [[7]. Due to their high demands
on internal-external DoF coordination and mechanism actu-
ation, these Compositional Dexterous Functional Object
Manipulation (CD-FOM) tasks remain an open challenge
in robotics.

CD-FOM requires bridging the gap between semantic
understanding and intricate physical dexterity. The robot
must not only interpret the task context—understand the
object’s function, identify how and where to interact with it
to actuate it (local semantics), and reason about the desired
outcome relative to other objects (global semantics)—but
also be able to execute the task physically—achieve a stable
yet functional grasp, coordinate complex hand-arm motions,

@ "Spray the plant"

Fig. 1: Our method, CoDex, bridges high-level semantic under-
standing with low-level physical dexterity. The visualization shows
CoDex executing the task “spray the plant” from a language com-
mand. The robot autonomously performs a task-aware functional
grasp, repositions the spray bottle, and actuates the trigger to spray
mist, all without requiring human demonstrations.

and apply precise forces. Effectively leveraging semantic
reasoning to guide the physical skills is crucial for success.

General object manipulation methods fall short for CD-
FOM. Learning from Demonstration methods acquire dex-
terity from expert teachers, while semantic understanding
is implicitly captured in their behavior [8[]-[11]. However,
learning the correlations between semantics and dexterity
from demonstrations is hard to obtain since it requires
large amounts of data obtained by teleoperating complex,
multi-fingered hands to actuate objects with internal mecha-
nisms [10[]—[13]]. Recent imitation from human videos meth-
ods eliminate the need for labor-intensive teleoperation, but
require instead learning to overcome human-robot morpho-
logical differences with limited object-specific strategies [7],
[14]-[16]. Alternatively, optimization-based approaches such
as Reinforcement Learning [17], [[18] and analytical grasp
synthesis [[19]-[23] achieve CD-FOM physical dexterity
without demonstrations, but their lack of semantic under-
standing demands external object-specific guidance in the
form of reward design and optimization objectives, which
limits their applicability and autonomy [2], [S], [24]-[26].
Such general semantic understanding can be obtained from
large-scale pre-trained models, such as Vision-Language
Models (VLMs) [27]-[31]], but their initial integration into
robotic solutions [30], [31]] revealed their limitations in ge-
ometric and embodied understanding, which restricted their
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guidance so far to a coarse, abstract level, not sufficient for
the intricate, coordinated hand-and-arm motions required for
CD-FOM [27]-129].

In this work we introduce CoDex, a framework that
bridges semantic understanding and physical dexterity for
CD-FOM through the use of semantic constraints. We define
semantic constraints as a set of geometric and spatial condi-
tions derived from an object’s function and the overall task
goal. CoDex integrates a VLM into an iterative refinement
procedure to achieve zero-demonstration semantic under-
standing, interpreting the task and generating two types of
semantic constraints: local (e.g., where to press a trigger and
in which direction) and global (e.g., where to aim a nozzle).
These constraints are used by CoDex to achieve physical dex-
terity, guiding a two-step policy learning process: an analytic
constrained optimization step that synthesizes a diverse set
of functionally-aligned grasp candidates, and a constraint-
guided RL step that uses the synthesized grasps and the
semantic constraints as guidance to train a sensorimotor arm-
and-hand policy for the CD-FOM task.

We demonstrate the capabilities of CoDex to operate six
previously unseen objects for different CD-FOM tasks, con-
trolling a 7-DoF robot arm equipped with a 16-DoF multi-
fingered hand and achieving 73% average combined suc-
cess rate. Our experiments validate that the VLM-generated
semantic constraints are crucial to this performance. A
human participant study demonstrates that our method for
determining global constraints produces significantly more
appropriate poses than prior VLM-based approaches. Fur-
thermore, we show that our final policy learning stage is
critical for achieving physical dexterity, improving functional
success by over 40% when compared to using analytical
grasps combined with the same VLM-generated constraints.

II. RELATED WORK

CoDex bridges semantic understanding and physical dex-
terity for compositional dexterous functional object manip-
ulation (CD-FOM). We position our work relative to three
key research areas.

Semantic Understanding via Vision-Language Models.
Vision-Language Models (VLMs) provide zero-shot seman-
tic understanding for robotics [27]-[31]], interpreting high-
level goals from language and vision. However, VLMs
typically provide abstract guidance lacking the detailed phys-
ical understanding needed for dexterous tasks [27]-[29].
Recent VLM-based manipulation systems [28], [29], [32]]
show promise but either require extensive training data or
remain limited to coarse manipulations. ReKep [31]] uses
VLMs to generate keypoint constraints for manipulation,
while PIVOT [30] employs iterative visual prompting to
refine robot actions. CoDex leverages VLMs to generate
concrete semantic constraints—both local (actuation and
function points) and global (target poses)—that directly
inform constrained optimization and policy learning, effec-
tively translating abstract VLM knowledge into CD-FOM
policies without requiring task-specific training data.

Functional Object Grasping and Physical Dexterity. In
task-oriented grasping, the aim is to select a grasp that not
only stabilizes the object but also facilitates the intended
function [4f], [5], [25], [26], [33]-[35]. Several methods
focus on optimizing contacts to achieve stable grasps, often
predicting force-closure metrics like the Ferrari-Canny [235]],
[34]-[36], but cannot be applied to grasps that enable the
actuation of objects’ internal degrees of freedom. Recent
analytical strategies [4], [26], [33] consider internal degrees
of freedom but they do not compose them with post-grasping
trajectories to actuate the object at the right location to
achieve a task. All these methods aim to provide a grasp
synthesis solution that generates a successful grasp from
images to be executed by a predefined controller, which can
lead to failures. Recently, some methods have integrated a
simulator with a model of the specific object into the loop for
online improvement of grasping strategies using reinforce-
ment learning or exploiting the simulator’s differentiability
for optimization [2], [25], [37]-[39]. While demonstrating
better performance, this strategy requires manual annotation
of the rewards and has yet to be extended to complex
objects with internal degrees of freedom (DoF) and post-
grasping motion. Moreover, all previous methods improve
grasp stability and/or functionality, but treat grasping as an
isolated problem, missing the opportunity to reason about it
in conjunction with subsequent motion to enhance dynamics
and stability during actuation.

Compositional Dexterous Functional Object Manipu-
lation. Often, successful tool use demands composing the
control of both in-hand adjustments and whole-arm extrinsic
motions [6], [7], [24], [40], but most existing works on
dexterous manipulation focus on one or the other. For in-
stance, significant research addresses in-hand manipulation,
focusing on fine finger coordination for tasks like object
reorientation [J5]], [13[], [24], [39], or rotating caps [2], [41],
[42], without consideration for full arm motion to control
the object’s overall trajectory for a task. Other works tackle
extrinsic manipulation, where a grasped tool interacts with
the environment, such as hammering or shoveling [5]], [43],
[44] on objects without internal degrees of freedom. Closer
to ours, [5] provide a composed solution for arm and multi-
fingered hand motion, but their method requires human
demonstrations and focuses on optimizing the grasp stability
to resist the forces resulting from subsequent arm motion,
failing to actuate the object’s internal degrees of freedom.
In contrast, CoDex holistically addresses the entire grasp-
move-and-actuate problem, generating a composed solution
that actuates both the object’s internal and external degrees
of freedom.

III. CoDEX: COMPOSITIONAL DEXTEROUS FUNCTIONAL
OBJECT MANIPULATION

CoDex bridges semantic understanding and physical
dexterity by leveraging VLM outputs as semantic con-
straints, which are then enforced through analytic con-
strained optimization and constraint-guided RL. As illus-
trated in Fig. given a language task description £ and
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Fig. 2: Overview of the CoDex pipeline, which bridges high-level VLM understanding and low-level dexterity by translating abstract VLM
outputs into concrete semantic constraints that guide a two-stage policy learning process. (1) VLM-Generated Semantic Constraints.
First, a VLM interprets the user’s input to generate local constraints (key interaction points like the actuation point and function point)
and a global constraint (the final object pose). (2) Constrained Optimization. In the first learning phase, these constraints are enforced
through analytic constrained optimization to synthesize a diverse set of motion trajectories, each of which includes a task-aware functional
grasp. (3) RL Policy Training. In the second phase, these motion trajectories initialize a constraint-guided RL process, which uses the
same semantic constraints as reward function and learn the complete grasp-move-actuate policy.

Fig. 3: Reconstructed objects with their VLM-identified local se-
mantic constraints. To extract these points, a VLM first generates
text descriptions for the actuation and function points. MoLMo [43]]
grounds these descriptions to 2D pixel coordinates (u,v) on the in-
put image. To project these into 3D, we first align the reconstructed
mesh to the image using FoundationPose. The 2D points are then
unprojected onto the 3D mesh using depth information to yield
the final actuation point p,e (blue arrow start) and function point
Pie (orange arrow start). The actuation direction da and function
direction d,c are estimated as the negative surface normal (dotted
line indicates inside the object).

an RGB-D scene observation I, our pipeline sequentially
executes two stages: VLM-Generated Semantic Constraints
and Constraint-Guided Policy Training. Constraint-guided
Policy Training can be further divided into two sub-stages:
Constrained Optimization and Constraint-Guided RL. Below,
we detail each stage.

A. VLM-Generated Semantic Constraints

Given the input pair (£, I), this stage uses VLMs to gen-
erate a set of semantic constraints that guide policy learning.
These constraints include: (i) local semantic constraints,
the actuation point p, and function point pg,. on the object,
and the target point pig on the environment; and (ii) a global
semantic constraint, the object’s target 6D pose 7.

The process starts with Visual Task Parsing. The functional
object is identified from (£, I) using open-vocabulary seg-
mentation (LangSAM). The segmented functional object’s
3D mesh M is then constructed using Tripo [46].

1) Local Semantic Constraints: Next, to derive the local
semantic constraints, VLM queries generate text descriptions
of key interaction points (e.g., “trigger”’, “nozzle”). These
descriptions are then grounded to 2D pixel coordinates (u, v)
on the image, which are subsequently unprojected into 3D
space to identify the Actuation Point p,, and Function
Point pg,. on the mesh, as detailed in Fig. El The actuation
direction d, is approximated by the negative surface normal
at Pact-

2) Global Semantic Constraints: Finally, CoDex derives
global semantic constraints (the goal pose 7*) through
VLM-Guided Cross-Entropy Method (VLM-CEM), an algo-
rithm inspired by [30]. VLM-CEM leverages the VLM’s
reasoning to drive an iterative pose search: at each round,
the VLM is prompted with the history H of previously
scored candidates and proposes K new poses expected to
score higher. We render these candidates (see Fig. [9), score
them with the VLM, append them to H, keep only an elite
subset, and repeat for /N rounds. As detailed in Algorithmm
this iterative proposal-and-evaluation loop allows the VLM
to perform an implicit optimization, converging on a pose
that is both functionally correct and physically grounded.

B. Constraint-Guided Policy Training

Using the semantic constraints generated in the previ-
ous stage, this stage learns a policy 7 for the complete
grasp-move-actuate sequence. This is achieved through a
two-phase process: (1) Analytic Constrained Optimization
generates a diverse set of statically stable and functionally
viable motions, and (2) Constraint-Guided RL uses them as
initialization for an online reinforcement learning process
with action primitives in simulation.



Algorithm 1 VLM-CEM

Require: Function Point pg,., Target Location pygg, itera-
tions N=06, candidates K =10
Ensure: goal pose T™*
1: Ty <= ANCHORINIT(Pfnc, Pigt)
2: 89 + VLMSCORE(RENDER(T}))
3 H <+~ {(T07SO)}

4: for i =1to N do

5: P < VLMPROPOSE(H, K)

6: for each 7T € P do

7 s < VLMSCORE(RENDER(T))
8 H—HU{T,s)}
9: end for

10: H « ToPR(H, p)

11: end for

12: return 1™ < argmax(r s)cp S

> keep top-p elites (optional)

-

Fig. 4: Human-like (left) and robot-specific (right) examples of
initial functional grasp candidates. Our analytic constrained op-
timization synthesizes functionally valid human-like and robot-
specific grasps allowing CoDex to exploit the hand’s full morphol-
ogy instead of restricting it to the human grasps that can be obtained
with imitation learning.

1) Analytic Constrained Optimization: This phase trans-
lates the VLM-generated local semantic constraints into
concrete mathematical objectives for grasp synthesis. We
first sample initial hand configurations gg from OQ—the valid
joint space—using inverse kinematics, biasing a finger to be
near the actuation point p,e;. These samples are then refined
via constrained optimization. The local constraints (pyet, dact)
directly inform the functional terms in Eq. [T} the Actuation
Pt Proximity term ensures a fingertip is within a distance
Odist Of Pact, While the Actuation Alignment term ensures
the fingerpad normal aligns with —d,. These are optimized
alongside physical constraints (stability, collision avoidance)
and an objective to maximize grasp robustness, measured by
the min-weight force closure metric 1*(¢) [23], [36].

max 1"(q)
S.t. l*(q) > lmin
s(FKi(q) =0, Vie{l,..,n}
o;(q) > dj, V collision pairs j
Figet € Facr .t
|FKtip(q, tact) — Pactll2 < daist
Npad (s tact) - (—dact) > co8(angte)

(Min F. Closure)
(Surface Contact)
(Coll. Avoidance)

(Act Pt Proximity)
(Act Alignment)
(1
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Fig. 5: Six functional object manipulation tasks in our experiments.
They require combining local manipulation of functional objects
with internal DoF (flashlight, board spray, water spray, air blower,
hot glue gun, and salt grinder) with their global motion in the scene.

If the optimization fails, we resample ¢y and restart. This
process yields a diverse set of feasible, function-aligned
candidates (Fig. @) for initializing the RL policy.

2) Constraint-Guided RL: While the analytic candidates
provide functionally-aligned and statically stable starting
points, they do not account for the dynamics of the full
manipulation task. The goal of this stage is therefore to learn
a policy 7 that discovers a complete, dynamically robust
motion sequence for the entire grasp-move-actuate task. By
initializing the RL policy with the optimized candidates, we
significantly constrain the exploration problem, enabling the
agent to focus on learning the complex dynamics of contact,
movement, and actuation.

Policy Parametrization The learned policy m takes an
observation o consisting of the relative hand pose, candidate
finger joints, and the designated actuation finger index. It
outputs an action vector a € R3® that parameterizes a motion
primitive by defining targets relative to the input candidate
Gcand-

o Target Grasp Joint Offsets: A jgrasp € R1C.

o Target Pre-Grasp Joint Percentages: ppregrasp € R16,

« Residual Hand Pose Offset: AThang € RS.

Motion Primitive. These action parameters guide a multi-
stage motion primitive, visualized in Fig. [} The primitive
breaks down the complex task into a sequence of simpler
steps: (1) the hand first moves to a pre-contact pose near
the object, (2) it then transitions to the final grasp pose,
(3) the fingers close to secure the object, (4) finally, it
moves the object towards the global goal T while simulta-
neously performing the required actuation. This structured,
parameterized primitive makes the high-dimensional control
problem tractable for RL.



Fig. 6: Key stages of the CoDex’s parameterized motion primitive
trained in simulation. The policy action space determines (1) the
pre-contact approach, (2) grasp pose, (3) finger closing strategy
(internal DoF actuation), and (4) object pose change (external DoF
actuation).

Reward Function The policy is trained with PPO to
maximize a unified reward function R. The reward is a
normalized weighted sum of shaped rewards (/) and binary
stage success flags (Sk), plus a bonus for final success
(Ssuccess)- A penalty resets the reward to O if significant grasp
instability is detected. The shaped rewards ([Ry) directly
enforce the semantic constraints by providing dense feed-
back for maintaining alignment with (p,c, dyet) and applying
sufficient force along the actuation direction. This unified
structure avoids the need for task-specific reward engineer-
ing [26]. The entire online training process converges in
approximately one hour in MANISKILL3 simulation [47].

The result of the RL is a full policy that generates a
compositional grasp-move-actuate motion for the CD-FOM
task. In the final step, the RL policy is executed on the real
robot, using a Franka arm with a LEAP hand.

IV. EXPERIMENTAL EVALUATION

In our experiments, we evaluate whether the proposed
CoDex framework successfully bridges the gap between
high-level vision-language understanding and low-level,
physics-grounded execution. To that end, our experiments
aim to answer the following three research questions:

Q1 How well does CoDex perform in CD-FOM in the real
world?

Q2 Does the VLM-CEM procedure propose global con-
straints that are both semantically and physically ap-
propriate for the task?

Q3 How much does the constraint-guided RL improve
success compared to attempting directly the candidate
grasps from constrained optimization?

Experimental Setup: We test CoDex on a 7-DoF
FRANKA Emika Panda arm, with a 16-DoF LEAP Hand
mounted as end-effector, as shown in Fig 5] RL Policies
are trained in MANISKILL3 using 2,048 parallel worlds
and directly deployed on the real robot. We test on the six
functional manipulation tasks introduced in §ITI] At the start
of every episode, the object is placed at a random pose on
the table before starting the trial. Each trial is evaluated with
two binary criteria: (i) Correct object movement—the object
is moved to the task-required pose, (ii) Correct actuation—
the mechanism is triggered. A trial is considered success if
both the criteria are fulfilled and there are no other failures.
Additionally, we record the grasp stability (i.e., the object
does not slip from the hand) for analysis in Q3.
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Fig. 7: Overall success rate comparison on six CD-FOM tasks,
evaluated over five real-world trials per task. Solid segments rep-
resent the rate of success, while shaded segments show rates of
partial success (either correct object movement only or correct
internal DoF actuation only). CoDex achieves a 73% success rate,
demonstrating the significant benefit of its policy learning stage
and VLM-CEM compared to two baselines, pure analytical grasp

synthesis and PiVOT (30].

Q1 — Performance on Compositional Dexterous Func-
tional Manipulation Tasks

Figure summarizes our real-world results, compar-
ing CoDex to two baselines: Analytical+VLM-CEM and
RL+PIVOT. Our method achieves an overall task success
rate of 73%, significantly outperforming the baseline’s 33 %
and 0%. The Analytical+VLM-CEM baseline combines the
best-performing initial grasp candidate from Li et al.
(selected via an oracle for maximum stability, see Q3) with
the global constraint from our VLM-CEM. The RL+PIVOT
baseline uses the same policy training procedure as ours but
uses PIVOT [30]] (SE3 variant) to generate global constraints.
It has a 0% success rate because none of PIVOT’s generated
global constraint meets the task requirement (e.g., the spray
bottle is not correctly aimed at the plant). We further explore
this in Q2.

The performance gap between our method and
Analytical+VLM-CEM primarily stems from actuation
failures in the baseline. While the oracle-selected grasp
is stable for lifting, the object often shifts slightly within
the hand during the subsequent movement to the goal.
This minor slippage is frequently enough to misalign the
actuation finger, causing it to lose the precise contact
required to operate the object’s mechanism. This highlights
a core challenge of CD-FOM: a statically optimal grasp is
often insufficient for a dynamic, contact-rich sequence. The
policy learning procedure in CoDex is crucial because it
learns to actively maintain and adjust the grasp throughout
the entire composed motion for the final functional usage
of the object.

Failures of CoDex, concentrated primarily on the
illuminate toy, clean keyboard, and grind
salt tasks, highlight complexities in integrating semantic
goals with physical execution for these demanding FOM
tasks.

A common failure mode arises from grasp—placement



incompatibility. The grasp that affords reliable actuation can
constrain the hand so that the subsequent target pose is
unreachable without collision. For example, illuminating the
toy requires a button-side grasp to press the switch, yet that
orientation forces the hand to collide with the table when
placing the light. Resolving such conflicts would require
capabilities such as in-hand reorientation or finger gaiting.

Failures also occurred during in-hand actuation, revealing
sensitivity to precise contact physics and sim2real gaps,
particularly evident in these three challenging tasks. Both
clean keyboard and illuminate toy task demand
high precision on button pressing—especially with the flash-
light’s small (< lem), soft button; slight contact misalign-
ments frequently caused the finger to slip off before suc-
cessful actuation. The grind salt task primarily suffered
from a sim2real gap, manifesting as slippage and grinder
toppling. Slippage can likely be reduced with more aggres-
sive friction domain randomization (and improved surface
modeling). Toppling appears to stem from mismatches in
controller dynamics and contact modeling between simula-
tion and hardware; mitigating it will require careful controller
gain calibration and contact/collision parameter tuning.

These challenging cases indicate that while our method
significantly advances CD-FOM, robustly handling scenarios
demanding extreme precision (like 11luminate toy) or
subject to substantial sim2real variations in contact physics
(like grind salt) remains an important direction for
future work, potentially involving richer object modeling and
learning adaptive policies.

Q2 — Quality of VLM-CEM Generated Constraints

While we use binary criteria in assessing whether an
object final pose is correct in Q1, some of the final poses
are more better than the others (e.g. a spray bottle that
aims at the edge of the plant versus aiming at the center
of the plant). To evaluate the quality of our novel VLM-
CEM procedure for generating global constraints, we asked
twenty participants to rate the rendered images generated
based on the resulting goal poses from the VLM-CEM and
three additional baselines:

« VLM-CEM: our keypoint-anchored sampler that gen-
erates candidate goal poses around detected interaction
points on the object.

e VLM-CEM (Dir.): a variant that restricts translations
sampling to be along the object’s functional axis (e.g.,
nozzle direction).

« PIVOT (SE3) [30]: an adaptation of PIVOT that perturbs
full 6-DoF poses in image-space without explicit keypoint
anchoring, often resulting in misalignment in depth or
lateral offset.

« PIVOT (Trans.) [30]: akin to the original PIVOT method,
searching only in 2D image-space translations based on
coarse visual alignment.

We generate three multi-view images per task per method
and requested human ratings on a five-point scale (1 =
unreasonable, 5 = perfect), where a human rating of (> 3)
is considered as semantically acceptable in our analysis.
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Fig. 8: Human study ratings of generated global goals. We request
human feedback on the global goals generated by our VLM-CEM
procedure and baselines (VLM-CEM without rotation changes,
PIVOT with rotation and without rotations). We also report the
average and standard deviation error bars of the results across all
goals for each respective method. On average, the two VLM-CEM
methods (ours) are ranked higher in most tasks.

Fig. 9: Example visualizations of different goal-pose-generation
methods on the task clean keyboard. Both variants of VLM-
CEM generate both semantically and physically valid global
constraints, while the baseline methods perform poorly on the task.

Fig.[8] depicts the result of our human ratings. We observe
that our VLM-CEM, along with the variant with directional
exploration, is ranked highest by humans in all tasks. To
ensure the validity of this finding, we perform a Wilcoxon
Signed-Rank test and verify this result to be significant with a
p < 0.02 for each comparison between the 2 PIVOT methods
and our 2 VLM-CEM methods.

Surprisingly, for the spray plant task, our VLM-
CEM with directional exploration ablation scores signifi-
cantly higher than the VLM-CEM with full translational
exploration. We hypothesize this is because the directional
constraint, while reducing the exploration space, effectively
filters out candidate poses that might appear plausible in
the 2D rendered images used for VLM scoring but are
functionally misaligned in 3D (e.g., aiming near the plant
but slightly off-axis). By enforcing alignment along the
functionally critical nozzle direction, the directional variant
ensures better geometric task relevance for the highest-
scoring poses in this specific spraying task.

By manually inspecting the lowest-scoring cases, we ob-
serve that most of them correspond to PIVOT’s results and
they are caused because they rely purely on image-space
alignment and thus often propose poses that appear correct
in 2D yet place the object off the interaction line in 3D
(e.g., a flashlight “aiming” at the toy but missing it laterally).
In contrast, VLM—CEM samples poses anchored at detected
interaction keypoints, yielding goals that are both visually
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Fig. 10: Performance gains of CoDex constraint-guided policy
training compared to the direct execution of the 3 and the best
analytical grasps from CoDex’s constrained optimization. Total bar
height indicates the success rate of achieving a stable grasp through
lifting. The bottom segment (darker shade) represents the success
rate of achieving both a stable grasp and successful actuation. By
training with constraint-guided RL in simulation for the full task,
CoDex significantly improves stability and actuation of the objects.

and spatially reasonable.

Q3 — Benefits of Constraint-Guided RL Policy Learning

In this set of experiments, we evaluate the improvements
gained from our compositional policy learning stage by
comparing its stability against executing the analytical grasp
generated via constrained optimization (adapted from [23]]).
We compare our learned policy (CoDex) against the direct
execution of these analytical grasps (evaluating 3 grasps per
object, each repeated 5 times with random object initializa-
tion). We report comparisons against both the average perfor-
mance across all grasp candidates per object and the oracle
best performance—the success rate achieved by the single
most successful grasp candidate for each object, selected
post-hoc after evaluating all grasp candidates. Fig. [I0]depicts
the results.

We observe that our constraint-guided policy learning
significantly improves grasp stability, exceeding the average
performance of initial grasp candidate by over 36% and
surpassing the oracle best performance (the maximum po-
tential success achievable without refinement) by over 12%.
The benefit of policy learning is even more pronounced
for functional actuation: the learned policy achieves 60%
higher actuation success than the average grasp candidate
and crucially, over 26% higher success than the best possible
outcome using only the initial grasp candidates (oracle).

Interestingly, none of the initial grasp candidates achieved
stable grasping success (let alone actuation) for the challeng-
ing salt grinder, likely due to its slippery surface and geom-
etry. However, CoDex’s policy learning stage successfully
discovers a stable grasp, highlighting the method’s ability
to improve even on difficult cases. This demonstrates the
importance of the holistic, simulation-based policy learning
stage. It allows CoDex to refine statically plausible grasp
candidates into dynamically robust policies that significantly
enhance functional viability compared to executing the initial
grasp candidates directly, even when considering the best
possible initial grasp candidate.

V. LIMITATIONS

While CoDex demonstrates success across multiple com-
positional FOM tasks, it also reveals several limitations that
we plan to address in future work. First, tasks requiring
pinpoint contact, such as pressing tiny push-buttons, are
sensitive to finger size and actuator tolerances, demand-
ing higher accuracy in control and possibly different hand
morphology to ensure reliable execution. Second, many
tasks go beyond reaching a single goal pose and instead
require sustained, coupled arm—hand motion—for example,
actuating scissors while sliding along paper—calling for
extensions toward trajectory-level constraints and closed-
loop feedback. Finally, the current policy assumes a single
actuation point, leaving out objects that need alternating or
multi-point actuation; extending CoDex to these tasks will
open new robot capabilities.

VI. CONCLUSION

We addressed the challenging problem of zero-
demonstration functional object manipulation by introducing
CoDex, a framework that translates abstract VLM guidance
into concrete semantic constraints. Our method enforces
these VLM-generated local (e.g., actuation points) and
global (e.g., target poses) constraints through a two-
phase process: first, analytic constrained optimization
efficiently generates a set of stable, function-aligned grasp
candidates, and second, constraint-guided reinforcement
learning initializes from these candidates to discover the
complete, dynamically robust grasp-move-actuate policy.
Our experiments on a physical robot demonstrated that
this tight integration of semantic reasoning with a physics-
grounded, constraint-enforcing pipeline is crucial. CoDex
autonomously discovered and executed complex strategies
for diverse tasks with unseen objects, validating our
approach. This work represents a key step toward versatile
and autonomous tool manipulation. Future directions
include extending the framework to more complex object
mechanisms, incorporating tactile feedback for finer control,
and exploring richer, interactive VLM dialogues.
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